阅读视图

发现新文章,点击刷新页面。

Delphi编程语言三十周年了!


delphi-30-years Delphi编程语言三十周年了! Delphi / Turbo Pascal 程序设计 计算机 资讯

Delphi最初的版本, Delphi被称为是VB Killer

知道Delphi这个编程语言的估计暴露年龄了。很多人以为Delphi这门程序已经挂了,但实际上没有:IsDelphiDead.com

我最后一次用Delphi是2018年,在我离开一个剑桥初创企业,当时我从2009年到2018年,用Delphi写了超过40万行Delphi代码。其中包括了一些C++还有WIN32内链汇编。

Delphi 30周年纪念日

2025年,Delphi迎来了其发布30周年纪念日。自1995年首次亮相以来,Delphi凭借其高效、稳定的特性,成为众多开发者的首选工具。在这30年间,Delphi经历了辉煌、低谷,如今在全球范围内依然拥有忠实的用户群体。

Delphi的诞生与辉煌

Delphi最初由Borland公司于1995年推出,作为Windows平台下的快速应用程序开发工具(RAD),其前身是DOS时代盛行的“Borland Turbo Pascal”。Delphi以其可视化组件库(VCL)和高效的编译器,使开发者能够快速构建复杂的应用程序。在1999年发布的Delphi 5版本中,Delphi达到了用户数量的巅峰,一度超越了Visual Studio,成为开发者的首选工具。

挑战与低谷

然而,好景不长。在推出Delphi 7之后,Borland公司因内部管理问题和市场竞争激烈,逐渐走向衰败。Delphi的创始人Anders Hejlsberg离开公司,转投微软并开发了C#语言,这对Delphi造成了沉重打击。同时,Java和.NET等新技术的兴起,进一步挤压了Delphi的市场空间。高昂的定价策略也使得许多开发者转向其他工具,Delphi的用户群体急剧萎缩。

重生与发展

尽管经历了低谷,Delphi并未消失。在被Embarcadero公司收购后,Delphi不断进行技术革新,推出了支持多平台开发的版本,如Delphi XE系列。这些版本支持Windows、Android、iOS和Linux等平台,满足了现代开发的需求。在全球范围内,Delphi在巴西、中国、德国、俄罗斯和非洲等地仍然拥有广泛的用户基础。特别是在中国,Delphi在教育领域和企业级应用中依然发挥着重要作用。

展望未来

随着技术的不断发展,Delphi也在积极适应新的趋势。从最初的单一平台开发工具,到如今支持多平台、多设备的综合性开发环境,Delphi始终在追求创新。在未来,Delphi将继续优化其跨平台能力,提升开发效率,为全球开发者提供更强大的支持。

在这30周年之际,让我们向Delphi致敬,感谢它为全球开发者带来的卓越贡献。期待Delphi在未来继续引领技术潮流,为开发者创造更多可能。

聪明的程序员用Delphi

“真正的程序员用C++,聪明的程序员用Delphi”这句话曾在IT界广为流传,体现出Delphi简单、高效等优点。 Delphi最初的版本, Delphi被称为是VB Killer, 在Windows下可以快速开发Native的WIN32/64代码。代码执行效率高因为是编译(Compiled)的而不像VB解释式的(Interpreted)。

Delphi作为Windows平台下的快速应用程序开发工具(RAD:Rapid Application Development),以其简单、高效和功能强大的特点,深受开发者喜爱。与C++相比,Delphi更易于上手,开发效率更高;而与Visual Basic相比,Delphi功能更为强大。因此,使用Delphi的程序员被认为是“聪明的程序员”。

聪明的程序员用Delphi

Delphi(VB Killer)是一种编程语言,它是由Borland公司于1995年推出的。Delphi是一种基于Pascal的高级编程语言,它是一种面向对象的编程语言,它是一种结构化编程语言,它是一种事件驱动的编程语言。也被称为Object Pascal。

英文:Delphi is 30 Years Old!

本文一共 922 个汉字, 你数一下对不对.
Delphi编程语言三十周年了!. (AMP 移动加速版本)

扫描二维码,分享本文到微信朋友圈
75a5a60b9cac61e5c8c71a96e17f2d9c Delphi编程语言三十周年了! Delphi / Turbo Pascal 程序设计 计算机 资讯
The post Delphi编程语言三十周年了! first appeared on 小赖子的英国生活和资讯.

相关文章:

  1. 假期送娃去管弦乐队速成班 (Holiday Orchestra) 两个孩子除了学习钢琴外,还各自学习了第二种乐器:老大学的是大提琴,老二学的是小提琴。这个圣诞节假期,我们为他们报名参加了为期4天的管弦乐队速成班,从早上9点半到下午4点半,中间休息一小时,总费用为229英镑,第二个孩子享受了折扣。 在4天的速成班中,孩子们第一天觉得非常累,特别是下午的2小时以上的排练,他们不停地拉琴,手感非常酸。刚开始他们看谱较慢,一不小心就错过了几个音符,但他们都坚持下来,并在最后一天进行了完美的表演。 管弦乐队分为Strings和Bands等部分。其中,Strings包括大提琴、小提琴和BASS(一种体型较大的乐器,外形类似大提琴)。Bands则包括各种吹奏的管乐器。要加入Upper Strings,需要达到或超过五级水平,而Lower Strings则是面向未达到五级的孩子。因此,参加考级不仅是对学习音乐的一种监督,也能解锁更多的可能性。 在表演当天,孩子们穿着帅气,这是他们的高光时刻。唯一的遗憾是我们坐在正中间,但孩子们被其他孩子挡住了,所以拍照和录像的角度都不理想。表演的厅很大,下次我们应该尝试到二楼从上往下拍摄。 PS:照片是我用单反(加能 EOS 6D Mark II 加大三白70-200mm中长焦红圈镜头拍的) 本文一共 443 个汉字,...
  2. 高大上 CloudFlare Pro CloudFlare CDN 的免费帐号已经很不错了 很多免费的功能, 最主要是 可以无限添加站点 每个站点都可以用上免费的 Universal SSL 还提供网站节流 安全 提速等功能. 往往只需要1个按键就可以 对于大部分用户来说是非常有用和省心的. 我又败家了...
  3. 智能手机 HTC One M9 使用测评 虽然我对手机要求不高, 远远没有像追求VPS服务器一样, 但是怎么算来两年内换了四个手机, 先是三星 S4 用了一年多, 然后 Nokia Lumia 635 Windows Phone, 后来又是 BLU, 半年多前换了...
  4. 按揭贷款(房贷,车贷) 每月还贷计算器 去年给银行借了17万英镑 买了20万7500英镑的房子, 25年还清. 前2年是定率 Fix Rate 的合同 (年利率2.49%). 每个月大概是还 700多英镑. 有很多种还贷的计算方式, 定率/每月固定 是比较常用的. 简单来说就是 每个月交的钱是...
  5. 微博帐号被盗 昨天想上微博 才发现 密码怎么都不对 密码不可能记错的 就那几个试来试去没一个对的. 本以为是系统暂时的问题 今天 还是这样于是就用忘记密码找回登陆信息. 改了一个比较复杂的密码. 登陆上 发现 有一私信: 果真 帐号被盗了 也许是暴力破解...
  6. bidvertiser的广告收入: 2年10美元 2013年申请了一个 bidvertiser 的广告 类似 google adsense, 不过是 Pay Per Click 按次点击付费的. 这个月收到了最低付费标准的 10美元 Paypal 并没有扣手续费....
  7. 老婆代购 – 畅购英伦 更新: 全新的 代购网站 畅购英伦 上线了! 求推广, 求转发, 求收藏! 多多使用 多多提建议! 我因为懒 而且还有其它原因 是不愿意做代购的. 我老婆最近在计划做代购的事情 因为老大下个月就上幼儿园了...
  8. 快通过 PAYPAL ME 捐点给我吧 PAYPAL在西方国家 很是流行 国内的山寨PAYPAL就是支付宝. PAYPAL 的好处就是 在英国和银行转帐 免费的. 转帐的速度很快. 几乎是几秒就转到了我的HALIFAX银行. PAYPAL和EBAY还真是一伙的 之前在EBAY上卖 需要交 10%的费用 PAYPAL费用 还有EBAY的上架费....

从一次经历谈 TIME_WAIT 的那些事

今天来讲一讲TCP 的 TIME_WAIT 的问题。这个问题尽人皆知,不过,这次遇到的是不太一样的场景,前两天也解决了,正好写篇文章,顺便把 TIME_WAIT 的那些事都说一说。对了,这个场景,跟我开源的探活小工具 EaseProbe 有关,我先说说这个场景里的问题,然后,顺着这个场景跟大家好好说一下这个事。

问题背景

先说一下背景,EaseProbe 是一个轻量独立的用来探活服务健康状况的小工具,支持http/tcp/shell/ssh/tls/host以及各种中间件的探活,然后,直接发送通知到主流的IM上,如:Slack/Telegram/Discrod/Email/Team,包括国内的企业微信/钉钉/飞书, 非常好用,用过的人都说好 😏

这个探活工具在每次探活的时候,必须要从头开始建立整个网络链接,也就是说,需要从头开始进行DNS查询,建立TCP链接,然后进行通信,再关闭链接。这里,我们不会设置 TCP 的 KeepAlive 重用链接,因为探活工具除了要探活所远端的服务,还要探活整个网络的情况,所以,每次探活都需要从新来过,这样才能捕捉得到整个链路的情况。

但是,这样不断的新建链接和关闭链接,根据TCP的状态机,我们知道这会导致在探测端这边出现的 TIME_WAIT 的 TCP 链接,根据 TCP 协议的定义,这个 TIME_WAIT 需要等待 2倍的MSL 时间,TCP 链接都会被系统回收,在回收之前,这个链接会占用系统的资源,主要是两个资源,一个是文件描述符,这个还好,可以调整,另一个则是端口号,这个是没法调整的,因为作为发起请求的client来说,在对同一个IP上理论上你只有64K的端口号号可用(实际上系统默认只有近30K,从32,768 到 60,999 一共 60999+1-32768=28,232,你可以通过 sysctl net.ipv4.ip_local_port_range 查看  ),如果 TIME_WAIT 过多,会导致TCP无法建立链接,还会因为资源消耗太多导致整个程序甚至整个系统异常。

试想,如果我们以 10秒为周期探测10K的结点,如果TIME_WAIT的超时时间是120秒,那么在第60秒后,等着超时的 TIME_WAIT 我们就有可能把某个IP的端口基本用完了,就算还行,系统也有些问题。(注意:我们不仅仅只是TCP,还有HTTP协议,所以,大家不要觉得TCP的四元组只要目标地址不一样就好了,一方面,我们探的是域名,需要访问DNS服务,所以,DNS服务一般是一台服务器,还有,因为HTTPS一般是探API,而且会有网关代理API,所以链接会到同一个网关上。另外就算还可以建出站连接,但是本地程序会因为端口耗尽无法bind了。所以,现实情况并不会像理论情况那样只要四元组不冲突,端口就不会耗尽)

为什么要 TIME_WAIT

那么,为什么TCP在 TIME_WAIT 上要等待一个2MSL的时间?

以前写过篇比较宏观的《TCP的那些事》(上篇下篇),这个访问在“上篇”里讲过,这里再说一次,TCP 断链接的时候,会有下面这个来来回回的过程。

我们来看主动断链接的最后一个状态 TIME_WAIT 后就不需要等待对端回 ack了,而是进入了超时状态。这主要是因为,在网络上,如果要知道我们发出的数据被对方收到了,那我们就需要对方发来一个确认的Ack信息,那问题来了,对方怎么知道自己发出去的ack,被收到了?难道还要再ack一下,这样ack来ack回的,那什么谁也不要玩了……是的,这就是比较著名的【两将军问题】——两个将军需要在一个不稳定的信道上达成对敌攻击时间的协商,A向B派出信鸽,我们明早8点进攻,A怎么知道B收到了信?那需要B向A派出信鸽,ack说我收到了,明早8点开干。但是,B怎么知道A会收到自己的确认信?是不是还要A再确认一下?这样无穷无尽的确认导致这个问题是没有完美解的(我们在《分布式事务》一文中说过这个问题,这里不再重述)

所以,我们只能等一个我们认为最大小时来解决两件个问题:

1) 为了 防止来自一个连接的延迟段被依赖于相同四元组(源地址、源端口、目标地址、目标端口)的稍后连接接受(被接受后,就会被马上断掉,TCP状态机紊乱)。虽然,可以通过指定 TCP 的 sequence number 一定范围内才能被接受。但这也只是让问题发生的概率低了一些,对于一个吞吐量大的的应用来说,依然能够出现问题,尤其是在具有大接收窗口的快速连接上。RFC 1337详细解释了当 TIME-WAIT状态不足时会发生什么。TIME-WAIT以下是如果不缩短状态可以避免的示例:

由于缩短的 TIME-WAIT 状态,后续的 TCP 段已在不相关的连接中被接受(来源

 

2)另一个目的是确保远端已经关闭了连接。当最后一个ACK​​ 丢失时,对端保持该LAST-ACK状态。在没有TIME-WAIT状态的情况下,可以重新打开连接,而远程端仍然认为先前的连接有效。当它收到一个SYN段(并且序列号匹配)时,它将以RST应答,因为它不期望这样的段。新连接将因错误而中止:

 

如果远端因为最后一个 ACK​​ 丢失而停留在 LAST-ACK 状态,则打开具有相同四元组的新连接将不起作用 (来源

TIME_WAIT 的这个超时时间的值如下所示:

  • 在 macOS 上是15秒, sysctl net.inet.tcp | grep net.inet.tcp.msl
  • 在 Linux 上是 60秒 cat /proc/sys/net/ipv4/tcp_fin_timeout

解决方案

要解决这个问题,网上一般会有下面这些解法

  • 把这个超时间调小一些,这样就可以把TCP 的端口号回收的快一些。但是也不能太小,如果流量很大的话,TIME_WAIT一样会被耗尽。
  • 设置上 tcp_tw_reuse 。RFC 1323提出了一组 TCP 扩展来提高高带宽路径的性能。除其他外,它定义了一个新的 TCP 选项,带有两个四字节时间戳字段。第一个是发送选项的 TCP 时间戳的当前值,而第二个是从远程主机接收到的最新时间戳。如果新时间戳严格大于为前一个连接记录的最新时间戳。Linux 将重用该状态下的现有 TIME_WAIT 连接用于出站的链接。也就是说,这个参数对于入站连接是没有任何用图的。
  • 设置上 tcp_tw_recycle 。 这个参数同样依赖于时间戳选项,但会影响进站和出站链接。这个参数会影响NAT环境,也就是一个公司里的所有员工用一个IP地址访问外网的情况。在这种情况下,时间戳条件将禁止在这个公网IP后面的所有设备在一分钟内连接,因为它们不共享相同的时间戳时钟。毫无疑问,禁用此选项要好得多,因为它会导致 难以检测诊断问题。(注:从 Linux 4.10 (commit 95a22caee396 ) 开始,Linux 将为每个连接随机化时间戳偏移量,从而使该选项完全失效,无论有无NAT。它已从 Linux 4.12中完全删除)

对于服务器来说,上述的三个访问都不能解决服务器的 TIME_WAIT 过多的问题,真正解决问题的就是——不作死就不会死,也就是说,服务器不要主动断链接,而设置上KeepAlive后,让客户端主动断链接,这样服务端只会有CLOSE_WAIT

但是对于用于建立出站连接的探活的 EaseProbe来说,设置上 tcp_tw_reuse 就可以重用 TIME_WAIT 了,但是这依然无法解决 TIME_WAIT 过多的问题。

然后,过了几天后,我忽然想起来以前在《UNIX 网络编程》上有看到过一个Socket的参数,叫 <code>SO_LINGER,我的编程生涯中从来没有使用过这个设置,这个参数主要是为了延尽关闭来用的,也就是说你应用调用 close()函数时,如果还有数据没有发送完成,则需要等一个延时时间来让数据发完,但是,如果你把延时设置为 0  时,Socket就丢弃数据,并向对方发送一个 RST 来终止连接,因为走的是 RST 包,所以就不会有 TIME_WAIT 了。

这个东西在服务器端永远不要设置,不然,你的客户端就总是看到 TCP 链接错误 “connnection reset by peer”,但是这个参数对于 EaseProbe 的客户来说,简直是太完美了,当EaseProbe 探测完后,直接 reset connection, 即不会有功能上的问题,也不会影响服务器,更不会有烦人的 TIME_WAIT 问题。

Go 实际操作

在 Golang的标准库代码里,net.TCPConn 有个方法 SetLinger()可以完成这个事,使用起来也比较简单:

conn, _ := net.DialTimeout("tcp", t.Host, t.Timeout())

if tcpCon, ok := conn.(*net.TCPConn); ok {
    tcpCon.SetLinger(0)
}

你需要把一个 net.Conn  转型成 net.TCPConn,然后就可以调用方法了。

但是对于Golang 的标准库中的 HTTP 对象来说,就有点麻烦了,Golang的 http 库把底层的这边连接对象全都包装成私有变量了,你在外面根本获取不到。这篇《How to Set Go net/http Socket Options – setsockopt() example 》中给出了下面的方法:

dialer := &net.Dialer{
    Control: func(network, address string, conn syscall.RawConn) error {
        var operr error
        if err := conn.Control(func(fd uintptr) {
            operr = syscall.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.TCP_QUICKACK, 1)
        }); err != nil {
            return err
        }
        return operr
    },
}

client := &http.Client{
    Transport: &http.Transport{
        DialContext: dialer.DialContext,
    },
}

上面这个方法非常的低层,需要直接使用setsocketopt这样的系统调用,我其实,还是想使用 TCPConn.SetLinger(0) 来完成这个事,即然都被封装好了,最好还是别破坏封闭性碰底层的东西。

经过Golang http包的源码阅读和摸索,我使用了下面的方法:

client := &http.Client{
    Timeout: h.Timeout(),
    Transport: &http.Transport{
      TLSClientConfig:   tls,
      DisableKeepAlives: true,
      DialContext: func(ctx context.Context, network, addr string) (net.Conn, error) {
        d := net.Dialer{Timeout: h.Timeout()}
        conn, err := d.DialContext(ctx, network, addr)
        if err != nil {
          return nil, err
        }
        tcpConn, ok := conn.(*net.TCPConn)
        if ok {
          tcpConn.SetLinger(0)
          return tcpConn, nil
        }
        return conn, nil
      },
    },
  }

然后,我找来了全球 T0p 100W的域名,然后在AWS上开了一台服务器,用脚本生成了 TOP 10K 和 20K 的网站来以5s, 10s, 30s, 60s的间隔进行探活,搞到Cloudflare 的 1.1.1.1 DNS 时不时就把我拉黑,最后的测试结果也非常不错,根本 没有 TIME_WAIT 的链接,相关的测试方法、测试数据和测试报告可以参看:Benchmark Report

总结

下面是几点总结

  • TIME_WAIT 是一个TCP 协议完整性的手段,虽然会有一定的副作用,但是这个设计是非常关键的,最好不要妥协掉。
  • 永远不要使用  tcp_tw_recycle ,这个参数是个巨龙,破坏力极大。
  • 服务器端永远不要使用  SO_LINGER(0),而且使用 tcp_tw_reuse 对服务端意义不大,因为它只对出站流量有用。
  • 在服务端上最好不要主动断链接,设置好KeepAlive,重用链接,让客户端主动断链接。
  • 在客户端上可以使用 tcp_tw_reuse  和 SO_LINGER(0)

最后强烈推荐阅读这篇文章 – Coping with the TCP TIME-WAIT state on busy Linux servers

(全文完)

(转载本站文章请注明作者和出处 酷 壳 – CoolShell ,请勿用于任何商业用途)

The post 从一次经历谈 TIME_WAIT 的那些事 first appeared on 酷 壳 - CoolShell.

Go编程模式 : 泛型编程

Go语言的1.17版本发布了,其中开始正式支持泛型了。虽然还有一些限制(比如,不能把泛型函数export),但是,可以体验了。我的这个《Go编程模式》的系列终于有了真正的泛型编程了,再也不需要使用反射或是go generation这些难用的技术了。周末的时候,我把Go 1.17下载下来,然后,体验了一下泛型编程,还是很不错的。下面,就让我们来看一下Go的泛型编程。(注:不过,如果你对泛型编程的重要性还不是很了解的话,你可以先看一下之前的这篇文章《Go编程模式:Go Generation》,然后再读一下《Go编程模式:MapReduce》)

本文是全系列中第10 / 10篇:Go编程模式

初探

我们先来看一个简单的示例:

package main

import "fmt"

func print[T any] (arr []T) {
  for _, v := range arr {
    fmt.Print(v)
    fmt.Print(" ")
  }
  fmt.Println("")
}

func main() {
  strs := []string{"Hello", "World",  "Generics"}
  decs := []float64{3.14, 1.14, 1.618, 2.718 }
  nums := []int{2,4,6,8}

  print(strs)
  print(decs)
  print(nums)
}

上面这个例子中,有一个 print() 函数,这个函数就是想输出数组的值,如果没有泛型的话,这个函数需要写出 int 版,float版,string 版,以及我们的自定义类型(struct)的版本。现在好了,有了泛型的支持后,我们可以使用 [T any] 这样的方式来声明一个泛型类型(有点像C++的 typename T),然后面都使用 T 来声明变量就好。

上面这个示例中,我们泛型的 print() 支持了三种类型的适配—— int型,float64型,和 string型。要让这段程序跑起来需要在编译行上加上 -gcflags=-G=3编译参数(这个编译参数会在1.18版上成为默认参数),如下所示:

$ go run -gcflags=-G=3 ./main.go

有了个操作以后,我们就可以写一些标准的算法了,比如,一个查找的算法

func find[T comparable] (arr []T, elem T) int {
  for i, v := range arr {
    if  v == elem {
      return i
    }
  }
  return -1
}

我们注意到,我们没有使用 [T any]的形式,而是使用 [T comparable]的形式,comparable是一个接口类型,其约束了我们的类型需要支持 == 的操作, 不然就会有类型不对的编译错误。上面的这个 find() 函数同样可以使用于 int, float64或是string类型。

从上面的这两个小程序来看,Go语言的泛型已基本可用了,只不过,还有三个问题:

  • 一个是 fmt.Printf()中的泛型类型是 %v 还不够好,不能像c++ iostream重载 >> 来获得程序自定义的输出。
  • 另外一个是,go不支持操作符重载,所以,你也很难在泛型算法中使用“泛型操作符”如:== 等
  • 最后一个是,上面的 find() 算法依赖于“数组”,对于hash-table、tree、graph、link等数据结构还要重写。也就是说,没有一个像C++ STL那样的一个泛型迭代器(这其中的一部分工作当然也需要通过重载操作符(如:++ 来实现)

不过,这个已经很好了,让我们来看一下,可以干哪些事了。

数据结构

Stack 栈

编程支持泛型最大的优势就是可以实现类型无关的数据结构了。下面,我们用Slices这个结构体来实现一个Stack的数结构。

首先,我们可以定义一个泛型的Stack

type stack [T any] []T

看上去很简单,还是 [T any] ,然后 []T 就是一个数组,接下来就是实现这个数据结构的各种方法了。下面的代码实现了 push()pop()top()len()print()这几个方法,这几个方法和 C++的STL中的 Stack很类似。(注:目前Go的泛型函数不支持 export,所以只能使用第一个字符是小写的函数名)

func (s *stack[T]) push(elem T) {
  *s = append(*s, elem)
}

func (s *stack[T]) pop() {
  if len(*s) > 0 {
    *s = (*s)[:len(*s)-1]
  } 
}
func (s *stack[T]) top() *T{
  if len(*s) > 0 {
    return &(*s)[len(*s)-1]
  } 
  return nil
}

func (s *stack[T]) len() int{
  return len(*s)
}

func (s *stack[T]) print() {
  for _, elem := range *s {
    fmt.Print(elem)
    fmt.Print(" ")
  }
  fmt.Println("")
}

上面的这个例子还是比较简单的,不过在实现的过程中,对于一个如果栈为空,那么 top()要么返回error要么返回空值,在这个地方卡了一下。因为,之前,我们返回的“空”值,要么是 int 的0,要么是 string 的 “”,然而在泛型的T下,这个值就不容易搞了。也就是说,除了类型泛型后,还需要有一些“值的泛型”(注:在C++中,如果你要用一个空栈进行 top() 操作,你会得到一个 segmentation fault),所以,这里我们返回的是一个指针,这样可以判断一下指针是否为空。

下面是如何使用这个stack的代码。

func main() {

  ss := stack[string]{}
  ss.push("Hello")
  ss.push("Hao")
  ss.push("Chen")
  ss.print()
  fmt.Printf("stack top is - %v\n", *(ss.top()))
  ss.pop()
  ss.pop()
  ss.print()

  
  ns := stack[int]{}
  ns.push(10)
  ns.push(20)
  ns.print()
  ns.pop()
  ns.print()
  *ns.top() += 1
  ns.print()
  ns.pop()
  fmt.Printf("stack top is - %v\n", ns.top())

}

 

LinkList 双向链表

下面我们再来看一个双向链表的实现。下面这个实现中实现了 这几个方法:

  • add() – 从头插入一个数据结点
  • push() – 从尾插入一个数据结点
  • del() – 删除一个结点(因为需要比较,所以使用了 compareable 的泛型)
  • print() – 从头遍历一个链表,并输出值。
type node[T comparable] struct {
  data T
  prev *node[T]
  next *node[T]
}

type list[T comparable] struct {
  head, tail *node[T]
  len int
}

func (l *list[T]) isEmpty() bool {
  return l.head == nil && l.tail == nil
}

func (l *list[T]) add(data T) {
  n := &node[T] {
    data : data,
    prev : nil,
    next : l.head,
  }
  if l.isEmpty() {
    l.head = n
    l.tail = n
  }
  l.head.prev = n
  l.head = n
}

func (l *list[T]) push(data T) { 
  n := &node[T] {
    data : data,
    prev : l.tail,
    next : nil,
  }
  if l.isEmpty() {
    l.head = n
    l.tail = n
  }
  l.tail.next = n
  l.tail = n
}

func (l *list[T]) del(data T) { 
  for p := l.head; p != nil; p = p.next {
    if data == p.data {
      
      if p == l.head {
        l.head = p.next
      }
      if p == l.tail {
        l.tail = p.prev
      }
      if p.prev != nil {
        p.prev.next = p.next
      }
      if p.next != nil {
        p.next.prev = p.prev
      }
      return 
    }
  } 
}

func (l *list[T]) print() {
  if l.isEmpty() {
    fmt.Println("the link list is empty.")
    return 
  }
  for p := l.head; p != nil; p = p.next {
    fmt.Printf("[%v] -> ", p.data)
  }
  fmt.Println("nil")
}

上面这个代码都是一些比较常规的链表操作,学过链表数据结构的同学应该都不陌生,使用的代码也不难,如下所示,都很简单,看代码就好了。

func main(){
  var l = list[int]{}
  l.add(1)
  l.add(2)
  l.push(3)
  l.push(4)
  l.add(5)
  l.print() //[5] -> [2] -> [1] -> [3] -> [4] -> nil
  l.del(5)
  l.del(1)
  l.del(4)
  l.print() //[2] -> [3] -> nil
  
}

函数式范型

接下来,我们就要来看一下我们函数式编程的三大件 map()reduce()filter() 在之前的《Go编程模式:Map-Reduce》文章中,我们可以看到要实现这样的泛型,需要用到反射,代码复杂到完全读不懂。下面来看一下真正的泛型版本。

泛型Map
func gMap[T1 any, T2 any] (arr []T1, f func(T1) T2) []T2 {
  result := make([]T2, len(arr))
  for i, elem := range arr {
    result[i] = f(elem)
  }
  return result
}

在上面的这个 map函数中我使用了两个类型 – T1T2

  • T1 – 是需要处理数据的类型
  • T2 – 是处理后的数据类型

T1T2 可以一样,也可以不一样。

我们还有一个函数参数 –  func(T1) T2 意味着,进入的是 T1 类型的,出来的是 T2 类型的。

然后,整个函数返回的是一个 []T2

好的,我们来看一下怎么使用这个map函数:

nums := []int {0,1,2,3,4,5,6,7,8,9}
squares := gMap(nums, func (elem int) int {
  return elem * elem
})
print(squares)  //0 1 4 9 16 25 36 49 64 81 

strs := []string{"Hao", "Chen", "MegaEase"}
upstrs := gMap(strs, func(s string) string  {
  return strings.ToUpper(s)
})
print(upstrs) // HAO CHEN MEGAEASE 


dict := []string{"零", "壹", "贰", "叁", "肆", "伍", "陆", "柒", "捌", "玖"}
strs =  gMap(nums, func (elem int) string  {
  return  dict[elem]
})
print(strs) // 零 壹 贰 叁 肆 伍 陆 柒 捌 玖
泛型 Reduce

接下来,我们再来看一下我们的Reduce函数,reduce函数是把一堆数据合成一个。

func gReduce[T1 any, T2 any] (arr []T1, init T2, f func(T2, T1) T2) T2 {
  result := init
  for _, elem := range arr {
    result = f(result, elem)
  }
  return result
}

函数实现起来很简单,但是感觉不是很优雅。

  • 也是有两个类型 T1T2,前者是输出数据的类型,后者是佃出数据的类型。
  • 因为要合成一个数据,所以需要有这个数据的初始值 init,是 T2 类型
  • 而自定义函数 func(T2, T1) T2,会把这个init值传给用户,然后用户处理完后再返回出来。

下面是一个使用上的示例——求一个数组的和

nums := []int {0,1,2,3,4,5,6,7,8,9}
sum := gReduce(nums, 0, func (result, elem int) int  {
    return result + elem
})
fmt.Printf("Sum = %d \n", sum)
泛型 filter

filter函数主要是用来做过滤的,把数据中一些符合条件(filter in)或是不符合条件(filter out)的数据过滤出来,下面是相关的代码示例

func gFilter[T any] (arr []T, in bool, f func(T) bool) []T {
  result := []T{}
  for _, elem := range arr {
    choose := f(elem)
    if (in && choose) || (!in && !choose) {
      result = append(result, elem)
    }
  }
  return result
}

func gFilterIn[T any] (arr []T, f func(T) bool) []T {
  return gFilter(arr, true, f)
}

func gFilterOut[T any] (arr []T, f func(T) bool) []T {
  return gFilter(arr, false, f)
}

其中,用户需要提从一个 bool 的函数,我们会把数据传给用户,然后用户只需要告诉我行还是不行,于是我们就会返回一个过滤好的数组给用户。

比如,我们想把数组中所有的奇数过滤出来

nums := []int {0,1,2,3,4,5,6,7,8,9}
odds := gFilterIn(nums, func (elem int) bool  {
    return elem % 2 == 1
})
print(odds)

业务示例

正如《Go编程模式:Map-Reduce》中的那个业务示例,我们在这里再做一遍。

首先,我们先声明一个员工对象和相关的数据

type Employee struct {
  Name     string
  Age      int
  Vacation int
  Salary   float32
}

var employees = []Employee{
  {"Hao", 44, 0, 8000.5},
  {"Bob", 34, 10, 5000.5},
  {"Alice", 23, 5, 9000.0},
  {"Jack", 26, 0, 4000.0},
  {"Tom", 48, 9, 7500.75},
  {"Marry", 29, 0, 6000.0},
  {"Mike", 32, 8, 4000.3},
}

然后,我们想统一下所有员工的薪水,我们就可以使用前面的reduce函数

total_pay := gReduce(employees, 0.0, func(result float32, e Employee) float32 {
  return result + e.Salary
})
fmt.Printf("Total Salary: %0.2f\n", total_pay) // Total Salary: 43502.05

我们函数这个 gReduce 函数有点啰嗦,还需要传一个初始值,在用户自己的函数中,还要关心 result 我们还是来定义一个更好的版本。

一般来说,我们用 reduce 函数大多时候基本上是统计求和或是数个数,所以,是不是我们可以定义的更为直接一些?比如下面的这个 CountIf(),就比上面的 Reduce 干净了很多。

func gCountIf[T any](arr []T, f func(T) bool) int {
  cnt := 0
  for _, elem := range arr {
    if f(elem) {
      cnt += 1
    }
  }
  return cnt;
}

我们做求和,我们也可以写一个Sum的泛型。

  • 处理 T 类型的数据,返回 U类型的结果
  • 然后,用户只需要给我一个需要统计的 TU 类型的数据就可以了。

代码如下所示:

type Sumable interface {
  type int, int8, int16, int32, int64,
        uint, uint8, uint16, uint32, uint64,
        float32, float64
}

func gSum[T any, U Sumable](arr []T, f func(T) U) U {
  var sum U
  for _, elem := range arr {
    sum += f(elem)
  }
  return sum
}

上面的代码我们动用了一个叫 Sumable 的接口,其限定了 U 类型,只能是 Sumable里的那些类型,也就是整型或浮点型,这个支持可以让我们的泛型代码更健壮一些。

于是,我们就可以完成下面的事了。

1)统计年龄大于40岁的员工数

old := gCountIf(employees, func (e Employee) bool  {
    return e.Age > 40
})
fmt.Printf("old people(>40): %d\n", old) 
// ld people(>40): 2

2)统计薪水超过 6000元的员工数

high_pay := gCountIf(employees, func(e Employee) bool {
  return e.Salary >= 6000
})
fmt.Printf("High Salary people(>6k): %d\n", high_pay) 
//High Salary people(>6k): 4

3)统计年龄小于30岁的员工的薪水

younger_pay := gSum(employees, func(e Employee) float32 {
  if e.Age < 30 {
      return e.Salary
  } 
  return 0
})
fmt.Printf("Total Salary of Young People: %0.2f\n", younger_pay)
//Total Salary of Young People: 19000.00

4)统计全员的休假天数

total_vacation := gSum(employees, func(e Employee) int {
  return e.Vacation
})
fmt.Printf("Total Vacation: %d day(s)\n", total_vacation)
//Total Vacation: 32 day(s)

5)把没有休假的员工过滤出来

no_vacation := gFilterIn(employees, func(e Employee) bool {
  return e.Vacation == 0
})
print(no_vacation)
//{Hao 44 0 8000.5} {Jack 26 0 4000} {Marry 29 0 6000}

怎么样,你大概了解了泛型编程的意义了吧。

(全文完)

(转载本站文章请注明作者和出处 酷 壳 – CoolShell ,请勿用于任何商业用途)

The post Go编程模式 : 泛型编程 first appeared on 酷 壳 - CoolShell.
❌