阅读视图

发现新文章,点击刷新页面。

大语言模型LLM的基本逻辑

上一篇说到我准备入个坑,结果就是最近埋头苦苦补习最基本的一些知识。随便写点东西梳理一下思路吧,这样万一我真的开始做点什么也算是一个基本素材。一些英文的名词我就不翻译了,反正现在大家英语都挺好的。

先来一些可以基本望文生义的名词解释。LLM=large language model = 大语言模型。这简直是个不能再俗的名字了。GPT = generative pre-trained transformer ,也是够直白的。

再来个极其简单的(受限于园主阅历)历史回顾。自然语言处理基本上经历了 word2vec, RNN,然后就是现在的transformer了。其实说到底,自然语言处理的基本问题就是一个时间序列问题。当园主意识到这点的时候也是惊掉了下巴,什么,计量里面的时间序列不是Autoregression, moving average,stationary 那些东西么,怎么看都跟自然语言扯不上关系了。后面看到做量化的人都在跟这个方向的进展,才明白说到底都是时间序列嘛。想想也是,自然语言就是一个把词按照特定顺序排列起来的数据,词与词之间的关联和顺序最终表达了一定的意义。

nlp模型想法差不多,就是基于已经有的词,预测对应的下一个词的概率。建模不是问题,但数据上来后计算是问题啊……于是有了transformer 那篇著名的 Attention is all you need,伴随着经典的encoder-decoder结构,就出现了让图灵测试不再是问题的大语言模型们。

再来一轮名词解释。自然语言到建模之前,需要先把unstructured data转换为可以计算的数字,这就是embedding 这一步,也叫token 化。然后再怎么办呢?transformer的核心是再算一下attention 矩阵,这个矩阵主要涵盖了词与词之间关联程度(不贴公式了),然后要做的就是放到神经网络里面去算了。这里有意思的是,encoder里面不只有一个基于attention数据的模型,而是多个,所以称之为 multi-head attention (多头注意力)。为啥需要多个模型呢,因为神经网络很有名的一个feature(bug)是local optima,即随着初始值的不同,参数可能会迭代到一个局部最优。至于全局最优嘛,存不存在都还是个迷。反映到encoder这里,有意思的是每个单独的模型就有可能抓住语言的某一个层面的特征,比如语法,比如逻辑,比如修辞,比如情绪,以及一些语义学还无法解释的神秘模型。但不要紧,大力出奇迹,只要计算机能算得出来就行。

encoder到这里已经可以做很多任务了,最显著的大概是sentiment analysis, 就是判断里面的情绪。比如一个评价是正面负面,或者是关于价格还是物流速度,等等。这些分类模型对于很多应用场景都是很有价值的信息提取过程,也称为auto-encoding。

decoder呢,任务就更直接,就是通过输入的新数据来预测并生成下文。这也是GPT的厉害之处,可以自己写小作文了。所以这一类也叫autoregressive model ,即AR!再看下去,其实decoder的架构和encoder很像,所以他们的并不是模型架构本身,而是任务的目标不同。

那什么时候我们会同时需要encoder和decoder呢?典型的例子就是两种语言之间的翻译。大概的数学任务就是,给定前后的词,来猜中间缺失的词是什么。这一类就是sequence to sequence 模型了。至于模型的评价,现有Rouge, Bleu等指标(怎么都是法语里的颜色……)。

好了,现在我们有一个transformer模型了,就可以高枕无忧了么?当然不是,下一阶段就是,fine-tuning 或者更准确的说,instruction fine tuning。

这一步,说到底就是让模型理解人们的意图。比如,我想让ChatGPT给我写代码,那我就会先给一个指令,help me write a code in python,这样它才可以理解我要的是代码而不是一个翻译任务。这类对于指定任务类型的 instruction 的训练,不仅仅在于理解目的,还牵扯到对于不同类型任务的参数细调。最简单粗暴的,我们可以要求对某一类型任务完全刷新所有参数,即full fine tuning,也可以省点资源,来只训练部分参数,即parameter efficient fine tuning PEFT。近期还有比较有意思的LoRa方法,在原来的参数矩阵外额外训练两个rank小很多的矩阵,最后再把新的两个小矩阵的乘起来,加到原始的参数矩阵上。甚至我们可以对instruct 的数据单独做一个小模型单独训练,然后在embedding 那一步把数据预处理后再喂给encoder or decoder。

fine tuning之后,理论上llm模型已经有了不错的预测能力了,但还需要一步alignment,即通过reinforcement learning 来进一步训练模型给出更符合人们需求的回答,比如 HHS (helpful, honest, harmless)。这一步主要是利用额外的人为标记的数据,比如对于多个候选答案之间的排序等等。当然,我们还可以搞个单独用来打分的模型给GPT的答案打分,哈哈,让机器自动自我修正。

这一些做完,基本上就是chatGPT 的雏形了。然后我们发现,不够,远远不够,一个AGI不能只有对话功能。下一步显然就是多模态Multimodality,即文字语音图像视频等等形式的结合。到这里,我们大概可以窥见这是一种“搭积木”的挑战了,即每一块儿自己的AI模型要和其他领域的结合起来,互通有无。

再来一组名词解释。Langchain,主要想法是各领域最后都转化为一个文本语言问题,然后互通有无。RAG (retrieval augmented generation) ,主要用来引入额外的信息来补全LLM的知识储备。ReAct (Reasoning and Acting augments) 主要是理解指令并利用各种多模态的模块来执行具体任务。

——

对了,为啥么这里园主通篇不提prompt。因为,园主觉得这就是个成长过程中不成熟阶段的伪命题……过两年可能就完全嵌入大模型本身了。

——

园主这些知识大概一半是Coursera 这门Generative AI with LLM 课扫盲来的。这门课主打一个深入浅出,适合理清大模型的整体逻辑,极其适合入门。剩下一半就是读各类的新闻和paper,还有各种视频。只能说,互联网时代,知识本身触手可及,考验的是系统学习的鉴别能力。

——

这篇本来是想写个提纲然后扔给GPT帮我完成的,结果最后还是老老实实的手动敲完了。哎,下次试试能不能用GPT写的更好一些。

❌